Normal Distribution

Checklist

Use this space to keep track of your progress with this subtopic. Print and file this document together with those from different sub-topics in a file for quick reference.

Task	Complete (tick or cross)	Traffic Light (Red, amber or green)
Watch the video tutorials		
Check you know your calculators skills		
Review the slides		
Review/annotate the flashcards		
Complete the quiz		
Complete the exam style questions		
Check your solutions against the solution videos		
Review any remaining areas you need to.		

Flashcards

The Normal Distribution

Flashcard

Symmetrical properties of the normal distribution

68% of results are within $+/-1$ Standard deviation of the mean
95% of results are within $+/-2$ Standard deviation of the mean
99% of results are within $+/-3$ Standard deviation of the mean

2.5% of results ($\mathrm{p}=0.025$) were BELOW (to the left of) a score of $\mathbf{3 0 . 4}$

Probability/Area	Meon	Standard	
$4 \mathrm{ram}^{\text {c }}$,		NOTE - this is slightly more
inuNo		$5,50$	30 you would get using the symmetrical approximations

Exam Style Questions

Complete these questions on paper and then check your solutions against the video solutions on the website.

Question 1

The weights of Grizzly bears are normally distributed with a mean of 357 kg and a standard deviation of 21 kg .
(a) Show this information on the diagram below.

Using the diagram
(b) Write down the probability that a randomly selected bear is greater than 357 kg .
(c) Write down the probability that a randomly selected bear is less than 315 kg .
(d) The probability that a particular bear is less than $x \mathrm{~kg}$ is 0.84 , find the value of x.

Working.....
(b) \qquad
(c) \qquad
(d) \qquad

Question 2

The sizes of adult tuna fish are normally distributed with a mean of 22 kg and a standard deviation of 3 kg .
(a) Calculate the probability that a randomly selected tunafish is less than 17 kg .
(b) (i) Calculate the probability that a randomly selected tunafish is between 20 and 24 kg
(ii) The probability of a tunafish being more than xg is 0.1 , calculate the value of x.

Working......
(a) \qquad
(b) (i) \qquad
(ii)

Question 3

The weights of newborn babies are normally distributed with a mean of about 3.4 kg and a standard deviation of 0.9 kg . Newborn babies' weights are classified as extremely low, low, normal, and high as shown in the table below.

Size	Weight (kg)
Extremely Low	Weight <1
Low	$1 \leq$ Weight <2.5
Normal	$2.5 \leq$ Weight <4.2
High	Weight ≥ 4.2

(a) Draw a diagram and shade the region representing the probability that a baby chosen at random, has a low birth weight.
(b) (i) Find the probability that a newly born baby, chosen at random, is born with a high birth weight.
(ii) If there are 5.4 million births in the European union each year, approximately how many are born with a high birth weight?
(iii) Write your answer from part (ii) in the form $a \times 10^{k}$ where $1 \leq a<10$ and $k \in \mathbb{Z}$.
(c) There is a 0.7 probability that a baby is born with a weight greater than $w \mathrm{~kg}$.
(i) Find w.

