Calculus - The concept

Checklist

Use this space to keep track of your progress with this subtopic. Print and file this document together with those from different sub-topics in a file for quick reference.

Task	Complete (tick or cross)	Traffic Light (Red, amber or green)
Watch the video tutorials		
Check you know your calculators skills		
Review the slides		
Review/annotate the flashcards		
Complete the quiz		
Check your solutions against the solution videos		
Review any remaining areas you need to.		

Flashcards

Screen shots of the flash cards

Differential Calculus

Flashcard

if $f(x)=a x^{n}$,
then $f^{\prime}(x)=a n x^{n-1}$

Function	Gradient Function	Aply the rule to differentiate
$4 x^{2}$	$2 \times 4 x^{l}=8 x$	You can do each term separately
$3 x^{2}+2 x$	$6 x+2$	
$\frac{1}{x}=x^{-1}$	$-1 \times x^{-2}=-x^{-2}$	

Be careful with negative
indices and fractions

Differential Calculus
Flashcard

Exam Style Questions

Complete these questions on paper and then check your solutions against the video solutions on the website.

Question 1

Consider the function $f(x)=3 x^{2}+5 x-7$
a) Find $f^{\prime}(x)$
b) Find
(i) $f^{\prime}(2)$
(ii) $f^{\prime}(-0.5)$
c) At which point does the function have a steeper gradient, $x=-0.5$ or $x=2$?

Write answers here
\square
(a) \qquad
(b) (i)
(ii) \qquad
(c) \qquad

Question 2

For each of the following find $\frac{d y}{d x}$ and find the gradient of each when $\mathrm{x}=3$
a) $y=x^{3}+2 x^{2}$
b) $y=\frac{2}{x}$
c) $y=\frac{2}{3} x^{3}+5 x^{-2}$

Write answers here

Working......
(a) \qquad
(b) \qquad
(c) \qquad

Question 3

Consider the function $f(x)=x^{4}+\frac{3}{2 x^{2}}-2 x+1$
a) Find $f(1)$
b) Find $f^{\prime}(x)$
c) What is the gradient of the function when $x=1$?

Another function is given by $g(x)=a x^{2}+2 x$
d) Find $g^{\prime}(x)$
e) For what value of a is $g^{\prime}(1)=f^{\prime}(1)$

