Introducing Derivatives

Differentiation and finding derivatives is all about finding rates of change.

The gradient of a straight line is constant. It does not change.

The gradient of a curve changes. We use differentiation to find the gradient function.

Some functions and their derivatives:

Function	Gradient
$\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{n}}$	$\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}=\boldsymbol{a} \boldsymbol{n} \boldsymbol{x}^{\boldsymbol{n - 1}}$
$y=3$	$\frac{d y}{d x}=0$
$y=4 x$	$\frac{d y}{d x}=4$
$\mathrm{y}=3 x^{2}$	$\frac{d y}{d x}=6 x$
$y=\frac{2}{x^{2}}$	$\frac{d y}{d x}=-4 x^{-3}$
$y=2 x^{-2}$	$\frac{d y}{d x}=\frac{-4}{x^{3}}$
$y=2 \sqrt{x}-\frac{3}{\sqrt[3]{x^{2}}}$	$\frac{d y}{d x}=x^{-\frac{1}{2}}+2 x^{-\frac{5}{3}}$
$y=2 x^{\frac{1}{2}}-3 x^{-\frac{2}{3}}$	$\frac{d y}{d x}=\frac{1}{\sqrt{x}}+\frac{2}{\sqrt[3]{x^{5}}}$

There are 3 different types of notation that you need to be able to recognise and use

$$
\begin{array}{c|c|c}
\hline y=a x^{n} \Rightarrow \frac{d y}{d x}=a n x^{n-1} & f(x)=a x^{n} \Rightarrow f^{\prime}(x)=a n x^{n-1} & \frac{d}{d x}\left(a x^{n}\right)=a n x^{n-1}
\end{array}
$$

